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ABSTRACT

Brain-Computer Interfaces (BCI) controlled through imag-
ined movements cannot work properly without a correct
classification of EEG signals. The difficulty of this problem
consists in low signal-to-noise ratio, because EEG may con-
tain strong signal components that are not related to motor
imagery. In this paper, these artifact components are to be
suppressed using a recently proposed underdetermined blind
source separation method and a novel MMSE beamformer.
We use these tools to remove unwanted components of EEG
to increase the classification accuracy of the BCI system. In
our experiments with several datasets, the classification is
improved by up to 10%.

Index Terms— Underdetermined Blind Source Separa-
tion, Beamforming, Electroencephalogram, Brain-Computer
Interface

1. INTRODUCTION

Some Brain-Computer Interfaces (BCI) are based on recogni-
tion of a human’s intention from noninvasive measurements
of brain activity such as electroencephalography (EEG) [1].
They enable to control a computer without using the periph-
eral nervous system of the human. We focus on BCI utilizing
EEG with a small number of channels (six), because it is the
most accessible measurement device.
A detection of imagined movements is possible thanks to

the fact that they generate components in EEG related to the
activity. The need is to isolate these components, because
there are many artifacts in EEG caused by other background
activities of the brain. Moreover, the signal-to-noise ratio
is usually low. One way is the standard temporal filtering
that passes selected frequency bands only, in which the target
components show most of their energy [2, 3]. Since EEG is a
multichannel signal, spatial filterings (linear combinations of
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channels) are possible as well. A popular method of this kind
is the common spatial patterns algorithm (CSP) [4]. Combin-
ing both filtering approaches provides a powerful strategy.
However, CSP and similar supervised methods suffer

from artifactual learning data. The reason is that the energy
of artifacts can be greater than the energy of the target com-
ponents related to motor imagery (MI). Since CSP consists
in maximizing the ratio of variances of extracted EEG from
two classes (e.g., left and right-hand imagined movements),
it may focus on the artifacts instead.
A great potential here provide blind source separation

methods (BSS), because they decompose multichannel EEG
into components based on their “information content”. In
other words, the energy (variance) of components is not the
primary criterion in BSS. For example, a popular method for
BSS is the Independent Component Analysis (ICA) that com-
putes spatial filters such that their outputs are as independent
as possible [5]. Since independent components originate from
independent brain activities, it is possible to isolate artifacts
not related to MI [6] and apply CSP then.
In BSS, the measured EEG data are modeled as

X = AS (1)

whereX is an m×N matrix whose rows consist of N sam-
ples of signals from m electrodes, S is a d × N matrix of
d independent components, and A is an m × d mixing ma-
trix. While X is known, A and S are to-be retrieved. Most
ICA methods consider the determined case where the number
of unknown components is the same as the number of elec-
trodes, that is m = d. The problem is that this need not be
satisfied in case of EEG, especially, when a small number of
electrodes is available.
In this respect, the underdetermined BSS (UBSS) case

d > m can be taken into account [7]. Contrary to the de-
termined model, the tasks to find A and S are not equiva-
lent here. Most UBSS methods therefore consist of two steps
where A is identified first, and S are separated based on the
previously estimatedA.
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In this paper, we focus on the classification of EEG
recordings that were recorded during imagined right or left
hand movement. Our goal is to utilize a recent UBSS algo-
rithm UDSEP [8], for the identification of A, and a novel
MMSE beamformer [10], for the retrieval of S, in order to
remove unwanted artifacts from EEG recordings before they
are sent to a BCI system (either for learning or testing). The
BCI system considered here consists of a preprocessing, fea-
ture extraction based on CSP, and a Linear Discriminative
Analysis (LDA) classifier. We evaluate the performance of
the BCI system on several datasets and compare the cases
when data are or are not treated via UBSS.
The paper is organized as follows. The following sec-

tion describes the problem to recognize MI and details of the
BCI system. Section 3 introduces the UDSEP algorithm and
the MMSE beamformer and describes their utilization for the
preprocessing of EEG. Section 4 is devoted to experimental
evaluations and comparisons on several datasets.

2. SYSTEM FOR EEG CLASSIFICATION

The classification of motor imagery (MI) can rely on event-
related phenomena that consist in either decreases or in-
creases of power in given frequency bands caused by de-
creases or increases in synchrony of underlying neuronal
populations [9]. A decrease and an increase in synchroniza-
tion is, respectively, called the event-related desynchroniza-
tion (ERD) and event-related synchronization (ERS).
For example, it was observed that preparation and imag-

ination of movements are accompanied by ERD of the mu
(8-13 Hz) and beta (13-30 Hz) rhythms over the contralateral
primary sensorimotor area. Some subjects show an ipsilateral
or contralateral beta ERS following the beta ERD [9].
This gives us a guideline to recognize and classify signal

components related to MI: For the right hand imagery move-
ment, an ERD distributes over the left hemisphere while an
ERS distributes over the right hemisphere, and vice versa. We
use a setup of few electrodes C3, C4, Cz, and electrodes sur-
rounding them (e.g. CP3, CP4 and CPz) [3, 14].

2.1. Preprocessing

A common preprocessing is to filter the original EEG signals
by a band-pass filter. The selected range should correspond
with the MI activity. Therefore, the band-pass filter is de-
signed to pass the range of mu and beta rhythms, that is 8-
30 Hz [2, 3].

2.2. CSP and Feature Extraction

CSP consists in finding a transform of EEG data by a matrix
WCSP (a spatial filter) such that it maximizes the difference
(in terms of variance) between two training populations of
EEG trials: one for left and one for right motor imagery. The

problem is solved by generalized eigenvalue decomposition
of covariance matrices of the two populations; see [4] for de-
tails.
Then, the features for a given trial data X are computed

as the variances of rows of

Y = WCSPX (2)

whereWCSP is a 2r ×m matrix. The rows ofWCSP are the
generalized eigenvectors corresponding to the r largest and
smallest generalized eigenvalues, which are the most suitable
for the discrimination of the two populations of EEG trials
[4].
Finally, the classification of EEG proceeds by an LDA

classifier1 that was learned on a dataset of training trials with
the default setting of its parameters.

3. UBSS PREPROCESSING

As stated in the introduction, the learning process and the
classification itself can be badly affected by strong compo-
nents in EEG data that are not related to MI. Here we propose
to remove the artifacts by means of UBSS. The use of blind
separation to remove unwanted signals from EEG has been
already studied e.g. in [12]. In this paper, we focus on the use
of two complementary methods recently published in [8, 10].
The first is the UDSEP algorithm for blind identification of
the mixing matrixA in (1). The second method is the MMSE
beamformer that extracts S fromX based on the estimatedA.

3.1. UDSEP

UDSEP belongs to a class of UBSS algorithms that estimate
A through a tensor decomposition [7]. In UDSEP, the compo-
nents S are modeled as white block-stationary Gaussian pro-
cesses, and the tensor to-be decomposed is a three-way tensor
built-up of estimated covariance matrices of blocks ofX. Let
Xk, k = 1, . . . ,M , be the kth block ofX andM be the num-
ber of blocks. Owing to (1) and the block-stationary model of
S, the covariance matrix ofXk has the structure

Rk = E[XkX
T
k ]/N1

= AE[SkS
T
k ]/N1A

T

= A diag[D1k, . . . , Ddk]A
T (3)

where diag[·] denotes a diagonal matrix, E[·] stands for
the expectation operator, and N1 is the length of blocks.
D1k, . . . , Ddk are elements of a matrix D and denote vari-
ances of S within the kth block.
In fact, the tensor decomposition consists in fitting the es-

timated covariances

�Rk = XkX
T
k /N1 (4)

1We use Discriminant Analysis Toolbox v. 0.3 by M. Kiefte available at
www.mathworks.com/matlabcentral/fileexchange/189.
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to their model values, which entails the finding of A and
D. Most tensor decomposition algorithmsminimize the mean
square error criterion

Q1(A,D) =
M�
k=1

trace[(�Rk − �Rk)(�Rk − �Rk)], (5)

where �Rk = A diag[D1k, . . . , Ddk]A
T . UDSEP minimizes

the following weighted criterion

Q2(A,D) =
M�
k=1

trace[Ck(�Rk − �Rk)Ck(�Rk − �Rk)] (6)

where Ck are weighting matrices. It was shown that the
choiceCk = (�Rk + εI)−1 with a small positive ε to restrain
regularity is asymptotically optimum within the assumed
model of signals S [8].
UDSEP also exploits the fact that the elements of D are

non-negative. Together with the asymptotic optimality, UD-
SEP was shown to be more accurate than its competitors, and
it succeeded in difficult scenarios such as the separation of 16
speech signals mixed into 9 channels [8]. Its applicability in
EEG data processing is promising but was not tested yet.

3.2. MMSE Beamformer

UDSEP is endowed by a beamformer that assumes the same
model of S and separates them block-by-block using the es-
timated A and signal variances in D. It estimates S through
time-varying spatial filtering of X based on maximizing the
theoretical signal-to-interference ratio. A disadvantage is that
this beamformer does not apply temporal filtering of signals,
which may improve the separation. Moreover, it must fol-
low the same block structure of signals that is assumed by
UDSEP. This is impractical in situations where the separated
signals should be continuous, because the estimated variances
of signals do not change continuously on endings of blocks.
Therefore, we have proposed a novel MMSE beamformer

in [10] that is independent of UDSEP. It minimizes theoreti-
cal mean square distance of estimated signals from the origi-
nal ones. It assumes that each signal is locally stationary and
its autocovariance (spectrum) is changing in time. In other
words, non-whiteness of signals is taken into account, which
leads to a better separation thanks to a spatio-temporal filter-
ing of signals.
The MMSE beamformer processes signals block-by-

block, but the length of blocksNs is a free integer parameter
and can be even equal to one. A further free parameter is the
length of temporal filters of signals denoted by P . Here, N1

has the meaning of the length of block within which signals
are assumed to be stationary, which enables to estimate their
autocovariances.
The beamformer, represented by a vector wj,t of length

mP × 1, estimates the tth sample of the jth signal as
�Sjt = w

T
j,t
�X:,t (7)

where

�X:,t =

�
����

X:,t

X:,t−1

...
X:,t−P+1

�
			
 , (8)

and X:,t denotes the tth column of X. The MMSE beam-
former is defined to minimize

E
�
(Sjt − �Sjt)

2
�
= E

�
(Sjt −w

T
j,t
�X:,t)

2
�
. (9)

All details are provided in [10], and the m-code implementa-
tion is available at [10]. Here, we summarize the steps of the
beamformer only. The beamformer begins with k = 1.

1. Put tk = (k − 1)Ns + 1.

2. Compute the sample covariance matrices

�Rtk [τ ] =
1

N1

tk+N1/2�
�=tk−N1/2+1

X:,�X
T
:,�−τ (10)

for τ = 0, . . . , P − 1.

3. Estimate signal auto-covariances for τ = 0, . . . , P − 1
as

d
τ
tk = [Dτ

1tk , . . . , D
τ
dtk ]

T

= argmin
d

‖�Rtk [τ ]−A diag(d)AT ‖2F

= (�AT�A)−1�AT vec(�Rtk [τ ]) (11)

where ‖ · ‖F denotes the Frobenius norm, vec(·) is the
vectorization operator, and �A = A�A where� is the
Khatri-Rao product.

4. Adjust the resulting signal autocovariances, for the jth
signal denoted by dj,tk = [D0

jtk
, . . . , DP−1

jtk
]T , so that

they are positive definite; see [10] for details.

5. For each j = 1, . . . , d, put

wj,tk = G
−1
tk (dj,tk ⊗A:,j) (12)

where ⊗ is the Kronecker product and

Gt =

�
����

Rt[0] Rt[1] . . . Rt[P − 1]
Rt[1] Rt[0] . . . Rt[P − 2]
...

...
...

...
Rt[P − 1] Rt[P − 2] . . . Rt[0]

�
			
 .

(13)
The covariance matrices in (13) are estimated by their
model values following from (1), that is Rt[τ ] =
A diag[dτ

t ]A
T . The jth original signal for t = (k −

1)Ns + 1, . . . , kNs is estimated by

�Sjt = w
T
j,tk
�X:,t. (14)

6. Put k ← k + 1 and go to 1 unless all available data are
processed.
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3.3. Artifacts Removal

An important property of the MMSE beamformer is that the
separated signals, denoted by �S satisfy

A�S = X, (15)

which enables a consistent reconstruction of X without se-
lected components (rows of) �S. Here, the goal is to withdraw
components that are not related to MI.
As justified in Section 2, components can be distinguished

based on their spatial activity, which is determined by ele-
ments of A. Components related to MI should be dominant
over the left-hand sensorimotor area (electrodes C3 and CP3)
or over the right-hand sensorimotor area (C4 and CP4), while
the other components should be active over the whole surface
on a topographicmap. Consequently, our steps are as follows.
Given a bundle of EEG data inX,
1. estimateA fromX by UDSEP,
2. determine dMI columns of A (the components) show-
ing the most different activity on (C3,CP3) and (C4,
CP4) in terms of the Fisher score [11],

3. estimate the corresponding rows of �S (MI components)
by the MMSE beamformer; the other rows put equal to
zero (let �SMI denote the resulting matrix), and

4. put the reconstructed EEG equal toXMI = A�SMI .

4. EXPERIMENTAL EVALUATION

We compare three BCI systems of the same type. The first one
uses CSP [4] for feature extraction, the second system utilizes
SWCSP [17], and the third system combines the proposed
artifacts removal procedure and CSP (UBSS+CSP). In CSP as
well as in SWCSP2, we select r = 2, so there are 4 features of
each trial data. We use default values for the other parameters
in SWCSP. Our tests are done using the following datasets
• Dataset CBCMI for single trial BCI EEG classification
provided by [13]. We used EEG signals of subjects S1
and S2 in section 1.

• ABSP EEG motor imagery dataset [14]: subjects A
(session 1 and 2), B, and C (sessions 2-4). Datasets
where the subject was asked to imagine movement of
left hand and both feet (instead of the left or right hand)
are denoted by LF.

• BCI III MI dataset (4a) [15]: subjects al and ay.
In total, we use 12 datasets on which we evaluate the

classification accuracy by the 10 × 10-fold cross-validation.
Results in terms of percents of correctly classified trials are
shown in Table 1. The last column of the table shows the
parameters of UDSEP and of the MMSE beamformer.
The results confirm that the proposed artifact removal

procedure can significantly improve the performance. For
instance, the classification accuracy is improved up to by

2We use the implementation of SWCSP from the BCILAB toolbox by C.
Kothe available at http://mloss.org/software/view/368/.
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(a) ERSP for the right-hand MI,
channel C3.
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(b) ERSP for the right-hand MI with
removed artifacts, channel C3.
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(c) ERSP for the left-hand MI,
channel C4.
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(d) ERSP for the left-hand MI with
removed artifacts, channel C4.

Fig. 1. ERSPs for the dataset S2s1 [13] calculated from EEG
before and after the artifacts removal. The ERD patterns (blue
areas) are more apparent in (b) and (d) compared to untreated
EEG in (a) and (c). The left plots show the mean frequency
power subtracted from the ERSP maps. The plots below the
maps show the maximum and minimum power over time.

10% compared to the case when CSP is used directly to
untreated EEG. The approach also competes with state-of-
the-are SWCSP.
For illustration, Fig. 1 visualizes the event-related spec-

tral perturbation (ERSP) [16], which is an average of power
spectrograms of a given channel over trials. A blue area in the
ERSP map corresponds to a decrease of power (ERD), while
a red area is caused by ERS. Fig. 1(a) illustrates the ERSP
map for the right-hand MI for the dataset “S2s1”, which was
calculated from 30 trials over channel C3. The same data
are evaluated in Fig. 1(b) but after the proposed UBSS pro-
cedure for artifacts removal was applied. We conclude that
ERD areas in Fig. 1(b) are much more significant than those
in Fig. 1(a). Similar conclusions can be drawn when compar-
ing Figures 1(c) and 1(d) for the left-hand MI over C4.

5. CONCLUSIONS

Our experiments confirm that the UDSEP algorithm and the
MMSE beamformer can be useful for removal of EEG signal
components that are not related to a target activity, here, the
motor imagery. The parameters of the methods can be tuned
during the learning process to optimize the classification ac-
curacy of a BCI system for a given subject. In this paper, we
have demonstrated an improvement of a classical BCI system
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Table 1. Classification score of motor imagery EEG
subj.,session [dataset] fs(Hz), trial length(s), #trials CSP SWCSP UBSS+CSP (M , d, P , dMI )

S1,1 [13] 500, 2, 60 82.10 ± 1.80 79.50 ± 2.61 91.67 ± 0.42 (240, 12, 9, 2)
S2,1 [13] 500, 2, 60 81.08 ± 2.33 82.50 ± 3.54 95.32 ± 0.81 (120, 13, 11-17, 4)
A,1 [14] 256, 3, 130 87.53 ± 1.04 86.92 ± 0.81 89.15 ± 0.77 (520, 7, 1-20, 6)
A,2 [14] 256, 3, 134 83.81 ± 1.00 78.21 ± 2.35 86.34 ± 0.71 (134, 9, 1-20, 5)
B [14] 250, 4, 162 87.96 ± 1.28 87.22 ± 2.00 94.32 ± 0.57 (810, 11, 1-5, 3)
C,2 [14] 256, 3, 158 85 .43± 0.76 79.87 ± 2.76 87.01 ± 0.53 (158, 7, 1-20, 3)
C,3 [14] 256, 5, 48 91.46 ± 0.66 87.50 ± 3.67 96.25 ± 1.31 (3072, 10, 1-20, 3)
C,4 [14] 256, 3, 120 88.89 ± 0.78 86.08 ± 1.89 91.33 ± 0.90 (1440, 14,1-20, 4)

C,2(LF) [14] 256, 3, 180 88.78 ± 0.35 90.72 ± 0.53 91.67 ± 0.64 (2912, 15, 1-20, 3)
C,3(LF) [14] 256, 3, 102 85.59 ± 1.14 92.06 ± 1.49 90.00 ± 0.62 (612, 6-12, 1-20, 2)
ay [15] 100, 3.5, 280 89.82 ± 0.51 88.21 ± 0.56 93.25 ± 0.20 (560, 7, 2-20, 5-6)
al [15] 100, 3.5, 280 90.75 ± 0.36 97.46 ± 0.26 94.14 ± 0.42 (280, 8, 18, 5)

based on CSP. A combination of the proposed method with
SWCSP will be subject of a further research.
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